知識服務系統 加值應用

知識文件檢視

回前頁
知識類型

期刊

標題

Chapter One - Biochar Effects on Rice Paddy: Meta-analysis

作者

Yasser M.AwadJinyangWangAvanthi D.IgalavithanaDaniel C.W.TsangKi-HyunKimSang S.Lee|Yong SikOk

名稱(期刊/節目)

Advances in Agronomy

期刊期數/節目集數

Volume 148

出版單位

Elsevier

出版年月日

2018/2/16

原文摘要

Rice is staple for nearly half of the world population. Biochar (BC) improves crop yields, reduces greenhouse gas (GHG) emissions, and immobilizes heavy metals in the soil. This study was aimed to meta-analyze the data from the published articles focused on the various BCs’ effects on rice yield, soil acidity, GHG emissions, and bioavailability of Cd and Pb. The data of pyrolysis temperature, application rate, and feedstock of BCs were categorized by using the MetaWin software for calculating the mean effect sizes (E) with 95% confidence intervals (CI). Compared to the control, the BCs increased soil pH and rice yield by 11.8% (medium E +: 0.436 to 0.439) and 16% (large E +: 0.790 to 0.883), respectively. Applying BCs derived from different feedstocks and pyrolysis temperatures reduced N2O emissions from rice paddies (large E −: − 0.692 to − 0.863). The BCs produced at 550–600°C reduced the GHG emission with medium to large negative effects (E −: − 1.571 to − 0.413). Applications of BCs at a range of 41–50 t ha− 1 were the best for rice productivity. Applications of all types and rates of BCs showed the significant decrease of available Cd by 35.4%–38.0% in a soil and led to the Cd reduction by an average of 43.6% in rice grains compared to the untreated soils. Applying BC is a promising approach to meet the challenges of sustainable global rice production, and the properties of BCs should be fully characterized and designed depending on its needs prior to its application.

關鍵字

CharcoalRice paddyGrain yieldsGreenhouse gas emissionsHeavy metals

連結

https://doi.org/10.1016/bs.agron.2017.11.005

最新上傳文件

MORE

上傳日期

標題/分類

2020/12/16

Soil Carbon and Nitrogen Dynamics in Two Agricultural Soils Amended with Manure‐Derived Biochar

生物炭效益
 
加值應用
 
農業應用
檢視
2020/12/16

Emission Reduction of 1,3‐Dichloropropene by Soil Amendment with Biochar

生物炭效益
 
加值應用
 
農業應用
檢視
2020/12/16

Biochar Impacts on Crop Productivity and Greenhouse Gas Emissions from an Andosol

生物炭效益
 
加值應用
 
農業應用
檢視

電話:(02) 2303-9978 / 傳真:(02) 2314-2234

地址:10066 台北市中正區南海路53號

服務信箱:biochar@tfri.gov.tw

農業部林業試驗所版權 © TFRIAll Rights Reserved

目前線上人次1

瀏覽人次44285

更新日期2024.04.24