知識服務系統 延伸研究

知識文件檢視

回前頁
知識類型

期刊

標題

Chapter One - Long-Term Aging of Biochar: A Molecular Understanding With Agricultural and Environmental Implications

作者

S.MiaF.A.DijkstraB.Singh

名稱(期刊/節目)

Advances in Agronomy

期刊期數/節目集數

Volume 141

出版單位

Elsevier

出版年月日

2017/1/5

原文摘要

Biochar has unveiled a new avenue for carbon (C) sequestration and has shown the potential to increase agricultural productivity. Although there is still debate about the mineralization rate of biochar and its role in sustaining soil fertility after fresh biochar amendment, oxidized or aged biochar has shown strong positive effects on crop productivity. Aging of biochar changes its physiochemical properties, while a range of biochar-derived organic materials (BDOMs) can be formed. These changes have significant consequences for the bioavailability and transport of nutrients and contaminants. In this review, we provide an overview of biochar aging, focusing on its change in structure, surface chemical properties, and the interactions of biochar and BDOMs with nutrients and contaminants in the soil. Synthesis of spectroscopic data from nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and near edge X-ray fine structure (NEXAFS) showed that with progressive aging, either artificially or naturally, biochar undergoes structural and chemical changes leading to progressive formation of surface functional groups such as carboxyl, phenolic, and carbonyl groups. As a result, the O:C ratio, negative surface charge, and cation exchange capacity increase with increased level of aging. The surface oxidized biochar and BDOMs may interact with soil minerals, nutrients, and contaminants resulting in increased mineral-stabilized organic matter, cation retention, anion bioavailability, and reduced organic contaminants’ sorption. Therefore, application of aged biochar could potentially increase agricultural productivity with increased capacities to retain nutrients while serving the role of C sequestration.

關鍵字

Biochar agingBlack carbonSurface oxidationBiochar-derived humic materialsCECNutrient availabilityContaminant mobility

連結

https://doi.org/10.1016/bs.agron.2016.10.001

最新上傳文件

MORE

上傳日期

標題/分類

2020/12/16

Soil Carbon and Nitrogen Dynamics in Two Agricultural Soils Amended with Manure‐Derived Biochar

生物炭效益
 
加值應用
 
農業應用
檢視
2020/12/16

Emission Reduction of 1,3‐Dichloropropene by Soil Amendment with Biochar

生物炭效益
 
加值應用
 
農業應用
檢視
2020/12/16

Biochar Impacts on Crop Productivity and Greenhouse Gas Emissions from an Andosol

生物炭效益
 
加值應用
 
農業應用
檢視

電話:(02) 2303-9978 / 傳真:(02) 2314-2234

地址:10066 台北市中正區南海路53號

服務信箱:biochar@tfri.gov.tw

農業部林業試驗所版權 © TFRIAll Rights Reserved

目前線上人次1

瀏覽人次44298

更新日期2024.04.26